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COMBINED FREE AND FORCED CONVECTION

P. M. Brdlik and V. . Dubovik

ABSTRACT. The study calculates the location of three types
of motion modes, free, combined and forced convection, while
examining the dynamic and thermal characteristics of a
boundary layer with respect to them. Mass transfer with
free and forced convections are then indicated.

We consider heat and mass transfer over a vertical surface with combined /120*
free and forced convection. The boundary layer differential equations, trans-
formed to ordinary differential equations, contain a parameter which defines
the influence of free convection on forced motion. Criteria are given for
classifying the nature of the motion into purely free, purely forced convection

and combined mode of motion.

Notation
X, ¥ - coordinates, Ty = shear stress at wall,
u, v - velocity components . A - thermal conductivity coefficient,
g - gravitational acceleration, .
r - latent heat of phase transform,
T - temperature, . .
. - : . ‘8,9 - dimensionless temperature and
v - kinematic viscosity, . . : ‘.
- .. dimensionless partial vapor density,
B - thermal expansion coefficient, m* - complex (m, -m, )/(1 - m. )
a - thermal diffusivity coefficient, P lo Tlw w’?
Py - partial vapor density, cp - specific heat at constant pressure,
D - diffusion coefficient, G - Grashof number,
W2 - weight velocity R - Reynolds number,
. . P - Prandtl number,
n - independent variable S - Schmidt number.,

*Numbers in the margin indicate pagination in the foreign text.



The index w denotes the value on the surface, the index « denotes the
value at a large distance from the surface, the index 1 denotes vapor, the

index 2 denotes air.

We consider (Figure 1) a vertical plate with a constant temperature T
and a partial density Py of component 1 located in the stream of a blnary

mixture flowing with veloc1ty U, in the dlrectlon of the lifting forces.
r

For a laminar incompressible boundary

layer for which we neglect the viscous dissi-
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pation and for which we do not take into ac-
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count the thermal diffusion, i. e., the dif-
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/ fusive thermal conductivity, and also under

/ the assumptions that cp1 = cp2 and that the
/ physical parameters for the vertical plane

/ are constant, the differential equations are

/ written in the form
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with the following boundary conditions:
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u=0, p= vor T= To pr=puy when y=0
u—U T- Teos 1= pmwhen y= (2)

Let us also admit that the velocity of the condensed fluid on the wall
and its thermal resistance are negligibly'small in comparison with the velocity
of unperturbed flow and the thermal resistance of the boundary layer. Fur-
thermore, in the equations of motion we omit the term for the 1lift arising

from the difference in concentrations.

We reduce system (1) to ordinary differential equations by introducing

the independent variable n and the stream function y

. . U 2 . T Tap == ¥ =
- n'=y<-;‘i:—) » F=(Tva) % () ("—‘a—y" T ) (3)
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In the new variables we have

. R - U. ty
v=Uaf @ v=—— (=) o) —i) (4
Then in the‘placé of system'(iirwe obtain
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In the transformed equations there appears the parameter G/R2 = A which

is independent of n. When this parameter is equated to zero equation (5)

turns into the equation for forced convection; for large values of A, obvious-

ly, the free convection process will be dominant. The primes denote differ-

entiation with respect to n.

In the new variables the boundary conditions {2) for system (5) will be:

f©0)=0, fw= Q‘)nét, =1, ¢=1 when n= 0

f'(«\>)=vi, =0, 9= 0 when 11-= ~ (6)
The boundary condition fw = const signifies that
1 U, v\'": ., R
: ”‘"z"“““z*-”f(“i-’—) o 18 vy g

The stated constraint does not manifest itself on the generality of the
conclusions made in this paper. As was shown in [1, 2] the law of variation
of Vo under free and forced convection has a comparatively weak influence on
the variation of the characteristics of the boundary layer and of the local
heat exchange coefficient. 1In the majority of cases the law v, ™ x-l/2

is consistent with the condition of constant temperature and constant mass

content on the surface. The weight velocities of air and vapor on the plate's

surface are

W, =——D.a__p.':'_ — —
w0 (a'!l y=0 wPrw 0
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T ! 9y Jy=o
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which gives
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since : '
. m-tm=1, m={p/p, m=pfp.

and, consequently,
1 dmy "
Ww=._p1)-———~——( ml}
i y=0

1—m \"0y
v (9)
From relations (3), (6), (8) and (9) we find that
SR 2 Myee T My ,l
TS T, O (0

where my is the mass content of the vapor on the surface.
: )

The nonlinear system (5) with boundary conditions (6) was solved on the
electronic computer M-20 by an iteration method using the sweep technique

[3, 4]. The Blasius solution [5] was taken as the zeroth approximation for
f(n).

As a result of the computations carried out we obtained the profiles for
the velocity, the temperature and the distribution of the partial density of
componeht 1 in the boundary layer (Figures 2, 3, 4) for mixed free and forced
convection for the numbers P = 0.72, S = 0.6 and for the parameter A equal
to 0.1, 1, 10, 100 with fw'= 0.05. On Figure 4 as an example is shown the in-
fluence of the mass flow in the temperature profile for A = 0.1. The solid
lines on Figure 3 represent the diétribution of the density of compdnent 1,

while the dashed lines represent the temperature distribution.

A. A. Szewczyk [6] solved the problem for the case fw'= 0, but without
taking the phase transforms into account. In this case the results in the

present paper coincide with those in [6].
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The local skin friction on the wall is determined by the expression

. du’
flp =p (Ef)y-.—.o —_F’”ono (11)
From relation (4) we get that

' du U\ e e o
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Then from (11) we have o

/(0) 1 f..£0
" Tt T

1’w=p.'—"‘ R"

or, in dimensionless form,

Tw f”(O) 1 1,(0) .
U= i v 7 g7 (12)

The total heat flux (with due regard to the phase transition heat), with-
drawn through the wall is computed fyom the formula

. [ oT reD (aml)
7" ‘_'—)“a_/) ii——mlw Y Jyeo (13)

and, moreover, we take the plus sign for evaporation and the minus sign for
condensation.

Then the heat removal coefficient (with due regard to the phase trans-

ition heat) is
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The first term occurring in the curly brackets gives the convective com-

ponent of the heat flux. Analogously, for the mass flux

.o, . 8m1 3 Uoo /2 - . :
h=—pD{ "),y =—#P (55 (=MD ¥ O

or the mass removal coefficient is

.._.__...._ii._______, Yo —1p’ (16)
U = s~y = — DAY (O)
and, consequently, the Nusselt number for mass transfer will be
oz '
Np=-F- =~ &y @) (17

The conditions under which the heat removal process can be treated either
as only a free convection flow or as only a forced convection flow may be de-
termined by comparing the numerical calculation with the results of the heat
removal calculation for purely forced and purely free convections with
P = 0.72 by means of the equations

LN N 0 (0) { G\ ,
e A (18
The first relation in (18) was obtained from the results of this paper

and coincides with that given by other authors [1], while the second relation

in (18) was obtained from the results of [7].

If we take it [8] that the heat transfer under purely forced or purely
free convection differs from (18) by no more than 5%, then the boundaries of

these streams can be determined from the conditions

0< A< 0.095 - forced convection
0.095 < A 16 - combined convection
16 < A - free convection



Analogously, from the well-known expressions [5, 7]

' ‘ - G
Y v I LI [Sin
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we can obtain the boundaries of the stream modes for calculating the skin

friction ) .
0 <4 <0.015 —~forced convection
Q01°f:;%fé1§ " combined convection

free convection

FREE AND FORCED CONVECTIONS COINCIDING IN DIRECTION

S=0.6 8 =0.9
9 (0)
Ty P=10.12 -
@, (0) m' @’ (0) . m*
. A=0.1 ,
0.06 —0.3295 | . —0.3105 0.0579 —().3561 0.0758
0.04 —0.3246 —0.3064 0.0391 —0.3499 - 0.0514
0.02 —0.3198 —0.3024 0.0198 —0.3439 0.0263
0.0 —0.3149 —0.2984 0.0 —0.3380 0.0
—0.02 —0.3102 —0.2944 —0.0203 —0.3319 —0.0271
- —0.04 —0.3454 —-| —0-2904 —0.0413 —0.3259 —0.0552
—0.06 —0.3006 —0.2864% —0.0628 —0.3201 —0.0343
A=1 )
0.06 —0.4125 -—0.3835 0.0469 —0.4518 0.0597
0.04 —0.4082 —0.3799 0.0316 —0.44064 0.0403
0.02 —0.4039 —0.3764 0.0155 —0.4409 0.0204
0.0 —0.3998 —0.3730 0.0 —0.4359 0.0
—0.02 —0.3956 —0.3696 —0.0162 —0.4306 —0.0209
—0.04 —0.3913 —0.3660 —0.0361 —0.4252 —0.0423
—0.06 -—0.3871 —0.3625 —0.0480 —0.4199 —0.0643
A=10
0.06 —0.6393 —0.5381 0.0306 —0.7064 0.0382
0.04 —0.6354 —0.5849 0.0205 —0.7014 0.0256
0.02 —0.6315 —0.53145 0.0103 —0.6064 0.0129
0.0 —0.6277 —0.5786 0.0 —0.6916 0.0
—0.02 —0.6235 —0.5754 —0.0104" —0.6366 —0.0132
—0.04 —0.6201 —0.5722 —0.0209 —0.6%17 | —0,0264
—0.06 —0.6162 —0.5631 —0.0316 —0.6768 —0.0399
A==100
0.08 —41.0756 —0.9376 0.0182 —1.1889 0.0221
0.04 —1.0716 -—{0.9344 0.0122 —1.1837 0.0152
0.02 —1.0679 —0.9313 0.0061 —1.1788 0-0076
0.0 . —1.0641 —0.9733 0.0 —1.1741 0.0
—0.02 —1.0603 —0.9751 —0.0061 —1.1692 —0.0077
—0.04 —1.056% —0.9720 —0.0123 —1.1643 —0.0154
—0.08 —1.0526 —0.9689 —0.0186 —4.1594 —0.0233



FREE AND FORCED CONVECTIONS OPPOSING IN DIRECTION

A=0.25
0.06 —0.2162 | —0.2138 0.0341 —0.2199 0.1224
0.04 —0.2133 | —0.2114 0.0367 | —0.2162 0.0933
0.02 —0.2104 | —0.2090 0.0287 | —0.2124 0.0424
0.0 -0.2076 | —0.2087 0.0 —0.2090 0.0
—0.02 —0.2047 | —0.2043 | —0.0294 | —0.2033 | —0.0434
—0.0% —0.2019 | —0.2019 | —0.059%4 | —0.2018 | —0.0881
—0.06 —0.1991 | —0.4996 | —0.0922 | -—0.1982 | —0.1361
A=1
0.06 —0.3037 | —0.2904 0.0320 | —0.3359 0.0804
0.04 —0.305% | —0.2878 0.0417 | —0.3317 0.0343
0.02 —0.3021 | —0.28352 0.0211 | —0.3275 0.0275
0 —0.2933 | —0.2325 0.0 - —0.3235 0.0
—0.02 —0.9939 | —0.2301 —0.0214 | —0.3193 | —0.0282
—0.04 —0.2927 | —0.2775 | —0.0433 | —0.3152 | —0.0371
—0.06 —0.2595 0.0655 | —0.3111 ~-0.0863
0.05 —0.5349 —0.6362 0.0412
0.04 -—0.:151’1 —0.6515 - 0.0276
8.82 -_8..51:.? ~8.g}§? 0.0139
. —~(}.3742 ~—0.642 0.0
—0.02 —0.5705 [ —0.6375 —0.0141
—0.0% —-0.5671 —0.6328 —0.028%
~0.06 | —0.5635 —0.6252 | —0.0429
0.06 —1.0470 | —0.9552 |  0.0188 | —1.163G 0.0233
0.04 —1.0432 | —0.9528 0.0126 | —1.1587 [* 0.0155
0:02 —1.0393 | —0.9492 0.0063 | —1.1539 0.0078
0. —1.0355 | —0.9462| 0.0 —1.1492 0.0
—0.02 —1.0%32 | —0.9432 —0.006% | —1.1445 —0.0079
—0.04 —1.6284 | —0.9402 | —0.0128 | —1.1397 | —0.0158
~—0.06 ~1.0247 | —0.9372 | —0.0192 —1.1348 | —0.0240

~ - e e —— - - e

The conclusions made above concerning the locations of the three types

of motion modes are preserved also for the case when fW # 0.

After the study of the dynamical and thermal characteristics of the .
boundary layer we pass on to consider the problem of mass transfer under the
combined action of free and forced convections. In the Table we have pre-
sented 8'(0), ¢'(0) and m* for various values of the parameter A with the
values P = 0.72, S = 0.9 and 9.6 both for condensation as well as for evapor-
ation. For fw‘ > 0 we have condensation, while when fW < 0, evaporation from

the vertical surface.

Calculations have been carried out also for the case when the forced
motion does not coincide with the direction of the free convection motion
but is opposite in'direction. In this case we have f'(«) = -1, in boundary

conditions (6) when n = «, while the remaining conditions are unchanged. The



system of equations (5) also remain unaltered.

Expressions (12), (15) and (17) for the skin friction and for the local
Nusselt numbers remain valid for the process characterized by free and forced

convections which are opposite in direction.
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